skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Anqi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Roll-to-Roll (R2R) printing techniques are promising for high-volume continuous production of substrate-based products, as opposed to sheet-to-sheet (S2S) approach suited for low-volume work. However, meeting the tight alignment tolerance requirements of additive multi-layer printed electronics specified by device resolution that is usually at micrometer scale has become a major challenge in R2R flexible electronics printing, preventing the fabrication technology from being transferred from conventional S2S to high-speed R2R production. Print registration in a R2R process is to align successive print patterns on the flexible substrate and to ensure quality printed devices through effective control of various process variables. Conventional model-based control methods require an accurate web-handling dynamic model and real-time tension measurements to ensure control laws can be faithfully derived. For complex multistage R2R systems, physics-based state-space models are difficult to derive, and real-time tension measurements are not always acquirable. In this paper, we present a novel data-driven model predictive control (DD-MPC) method to minimize the multistage register errors effectively. We show that the DD-MPC can handle multi-input and multi-output systems and obtain the plant model from sensor data via an Eigensystem Realization Algorithm (ERA) and Observer Kalman filter identification (OKID) system identification method. In addition, the proposed control scheme works for systems with partially measurable system states. 
    more » « less